
Expert Systems with Applications 42 (2015) 7979–7990
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Modelling rules for automating the Evented WEb by semantic
technologies
http://dx.doi.org/10.1016/j.eswa.2015.06.031
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: miguelcb@dit.upm.es (M. Coronado), cif@dit.upm.es (C.A.

Iglesias), emilioserra@fi.upm.es (E. Serrano).

1 http://tweetdeck.twitter.com/.
2 http://rapportive.com/.
Miguel Coronado a, Carlos A. Iglesias a, Emilio Serrano b,⇑
a Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Telecomunicación, Departamento de Ingeniería de Sistemas Telemáticos, Ciudad Universitaria,
28040 Madrid, Spain
b Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros Informáticos, Departamento de Inteligencia Artificial, Campus de Montegancedo, Boadilla del Monte,
28660 Madrid, Spain
a r t i c l e i n f o

Article history:
Available online 25 June 2015

Keywords:
Event-stream
Linked data
Semantic Web
Web rule
Knowledge management
Social sensor
a b s t r a c t

The Live Web is characterised by a new way of interacting with the Web through dynamic streams of rel-
evant real-time contextual information to users. These sources of massive data usually overwhelm them,
because they are not able to consume that amount of data. Task Automation Services (TASs) are platforms
or apps that allow their users to author automation rules to combine events from streams while reducing
the effort for handling incoming information. While these platforms are a reality, they suffer from two
major drawbacks: (i) the only incoming data streams available are those the TASs developers decided
to include in the system, and (ii) they lack of a mechanism to reason over large scale data outside their
platform. To face these challenges, this paper contributes in (i) reviewing the existing state of the art
including research and commercial work given their relevance. Based on the lessons learnt from this
review, (ii) we propose the Evented WEb ontology (EWE), that models the Evented WEb domain, and in
particular those concepts around TASs. EWE enables scalability, interoperability and definition of rules
with reasoning over Linked Open Data (LOD) cloud. To illustrate these contributions, (iii) a semantic
TAS has been implemented that benefits from the advantages EWE offers, and solves a realistic problem
using semantic technologies. Finally, (iv) to validate the ontology covers the domain it models, a thor-
ough ontology evaluation is presented.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The term Live Web (Windley, 2011), also called the real-time
Web (De Francisci Morales, Gionis, & Lucchese, 2012) or the event
Web (Singh & Jain, 2010), describes a new stage in the evolution
of the Web that extends the Web 2.0 or interactive Web. Instead
of simply browsing static webpages or even interacting with a
website, the Live Web is characterised by a brand new style of
interaction through dynamic streams of information, called per-
sonal streams, to present contextual and relevant experiences to
users (Windley, 2011). There are several sources of personal
streams such as: social networks, sensor networks, and mobile
phones. These sources provide the necessary location-aware,
relationship-aware, preference-aware and sensory context to
achieve a new generation of context-aware applications (Beach
et al., 2010).
Nevertheless, given that each user is a potential source of
events, a typical user often gets flooded with a large number of
notifications; e.g. tweets, CRM notifications, chat messages, etc.
As a result, they only read a small fraction of those they receive
(De Francisci Morales et al., 2012), wasting tons of potentially use-
ful data. Thus, several automation tools have emerged in order to
simplify personal-stream management. Some of these tools are
social media management tools (Kietzmann, Hermkens,
McCarthy, & Silvestre, 2011) such as: TweetDeck,1 with advanced
filtering and scheduling facilities; Rapportive,2 that combines
Linkedin profiles with Gmail contacts; and, data-driven mashup
tools (Yu, Benatallah, Casati, & Daniel, 2008), which provide users
the ability to create new applications based on the available services.

What makes these tools really useful for consumers is that they
combine incoming data available from different personal streams,
presenting the information to the user in a manner that it is more
useful than it was by separate. Thus they create new personalised

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2015.06.031&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2015.06.031
mailto:miguelcb@dit.upm.es
mailto:cif@dit.upm.es
mailto:emilioserra@fi.upm.es
http://tweetdeck.twitter.com/
http://rapportive.com/
http://dx.doi.org/10.1016/j.eswa.2015.06.031
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

7980 M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990
streams and services that behave in a particular way for each dif-
ferent user.

In this regard, a number of now prominent websites, mobile
applications, and desktop applications feature rule-based task
automation. Typically, these services provide users the ability to
define which action should be executed when some event is trig-
gered, i.e. each user defines its own automations. Some examples
of this simple task automation could be ‘When I am mentioned in
Twitter, send me an email’, ‘When I come within 500 meters of this
place, check-in in Foursquare’, or ‘Turn Bluetooth on when I leave
work’. We call these services Task Automation Services (TASs). Ifttt
(IFTTT put the internet to work for you, 2015), Zapier (Zapier the
best apps. Better together, 2015) or Tasker (Tasker total
automation for android, 2015) are a few enlightening examples.

The great number of users these platforms accumulate, speak
for itself in terms of usefulness. However, they suffer from two
major drawbacks: (i) the only incoming data streams available
are those the platform is prepared for; and, (ii) they lack of a mech-
anism to use and reason over large scale data outside their plat-
form such as the Linked Open Data (LOD) cloud or context data.
These shortcomings decrease TASs flexibility, narrowing rule
capabilities.

Semantic Web technologies are suitable for being incorporated
to TASs and expert systems implemented by these services in order
to face the two challenges explained above. These technologies
have enhanced experts systems in a large number of application
domains such as: information retrieval (Thangaraj & Sujatha,
2014; Song, Liang, Cao, & Park, 2014), traffic information services
(Zapater, Escrivá, García, & Durá, 2015), emergency management
(Onorati, Malizia, Diaz, & Aedo, 2014; Serrano, Poveda, & Garijo,
2014), recommendation systems (Martín-Vicente et al., 2014;
Ying et al., 2014), reputation systems (Hermoso, Centeno, & Fasli,
2014; Serrano, Rovatsos, & Botía, 2012), ambient intelligence (de
Alba, Campillo, Fuentes-Fernández, & Pavón, 2014; Serrano,
Moncada, Garijo, & Iglesias, 2014), and cloud computing (Rezaei,
Chiew, Lee, & Aliee, 2014; Jula, Sundararajan, & Othman, 2014).

In this scenario, we present a fourfold contribution. The first
contribution of this paper is surveying the state of the art in Task
Automation Services to gain insight into this novel field and to sup-
port the hypothesis that these systems have the shortcomings
explained above. The second contribution is the development of
an ontology to model the Live Web called the Evented WEb ontology
(EWE). With EWE, personal streams and the events they produce
are modelled semantically so they may be automatically discov-
ered (König-Ries, Opasjumruskit, Nauerz, & Welsch, 2012). Once
these personal streams and events are semantically described,
composition rules based on them can reason over the LOD. The
third contribution is an implementation of a semantic TAS using
EWE which addresses the shortcomings observed in the revised
TASs. Finally, the fourth contribution is an ontology evaluation that
validates that EWE covers the domain it models by comparing its
coverage and accuracy to popular alternative approaches.

The rest of the paper is organised as follows. First Section 2
describes the current state of TASs, including the drawbacks which
motivate this paper. Next, Section 3 presents the EWE ontology: its
design methodology, the main classes, properties, mapping to
existing external ontologies, and examples of EWE use. An imple-
mentation of a semantic TAS featuring EWE and a use case are pre-
sented in Section 4. Then, in Section 5, EWE is formally evaluated.
Finally, Section 6 concludes and gives future works.
3 http://www.wemothat.com/.
4 http://www2.meethue.com/.
2. Related works in Task Automation Services (TASs)

Task automation systems of personal streams are a novel
research field whose relevance has significantly increased in the
last few years. Pushed by the great amount of personal streams
available nowadays, these systems are also gradually being
adopted by the users as one of their bedside apps and webpages.
For that reason, we consider surveying the most relevant related
works an important contribution of this paper.

We already named Iftt (IFTTT put the internet to work for you,
2015), Zapier (Zapier the best apps. Better together, 2015) and
Tasker (Tasker total automation for android, 2015) but there are
plenty of commercial TASs. Some of these are: Elastic.io
(Elastic.io integrate once. Connect many, 2015) and Cloudwork
(Cloudwork connect your business apps, 2015), that work on the
Web as Ifttt and Zapier do; and, AutomateIt (Automateit turn
your smartphone into a genius-phone, 2015), Atooma (Atooma a
touch of magic, 2015) and on{x} (On{x} automate your life,
2015), which are smartphone apps as Tasker. This trend is closely
related to the Web of Things (WoT) where several devices and mid-
dlewares allow the users to author their personal automation too,
e.g. SmartThings (SmartThings life like never before, 2015), Webee
(Webee Experience, Connected, 2015) or Wigwag (WigWag smart
starts with a brain, 2015).

Apart from the foundation the different TASs work on (either
the Web or a device), there are other characteristics that may dif-
ferentiate them from each other. The target audience, i.e. the mar-
ket fit, is one of the most relevant. Iftt, AutomateIt and Atooma
focus on the general audience. Zapier and Cloudwork target busi-
ness users. Finally, Tasker and onx aim at more technical users.
Several other minor technical differences may be considered, some
of them are summarised in Table 1, while the complete list of fea-
tures used in our study is available online (Coronado, Iglesias, &
Serrano, 2015b). It is of particular interest, the information gath-
ered in Table 2, that shows the different terms used to define the
same elements. This table illustrates the lack of standardisation
about this topic that we aim to address with EWE ontology, being
one of the contributions of our work.

Apart from commercial systems, there are several approaches to
TASs in the specialized literature. Related to the WoT, Paraimpu
(Pintus, Carboni, & Piras, 2012) allows user to interconnect
Http-enabled smartobjects and Web Services. In the terms we
use, it is a TAS that supports configuring sensors and devices as
data streams. Among the current TASs described before, several
of them support using physical sensors and actuators from differ-
ent approaches. Iftt, includes channels to handle sensors such as
WeMo3 or PhillipsHue.4 Its approach bypasses communication to
them using third party APIs. SmartThings or Webee directly support
managing sensors and but only those they provide. In this regard,
Parimpu is more flexible than any of them since it allows configuring
your own smartobjects as channels. However, final users need pro-
gramming skills to configure them. As Karger (Karger, 2014) points
out, one of the main disadvantages of these systems is that it is
impossible to integrate new data suppliers and consumers unless
the TAS company chooses to do so. To overcome this problem,
Opasjumruskit et al. designed Mercury (Opasjumruskit, Expósito, &
König-Ries, 2012), a powerful TAS that features service discovery.
This service is able to find appropriate sensors, services, actuators,
etc.; to perform certain functionality. Mercury relies on semantic
annotation of Web of device data sources so it can reason about
them. Regarding better user interfaces, Atomate it (Van Kleek,
Moore, Karger, André, & Schraefel, 2010) focuses on providing a
constrained-input natural language interface for composing automa-
tions in natural language. Although it is not an entirely free-text
approach, it is very intuitive and the authors claim that users

http://www.wemothat.com/
http://www2.meethue.com/

Table 1
Comparison of Task Automation Services’ advanced features.

Feature Ifttt Zapier Kinetics Elastic.io

Rules with more than one
condition

No No Yes No

Rules with more than one
action

No No Yes Yes

Event filtering No Yes Yes No
Rule sharing Yes Yes No No
Channel categorization No Yes - No
Support for devices Yes No Yes (KRL) No
Built-in context No No Yes No
Visual rule editor Yes Yes No (KRL) Yes
Temporal reasoning No No Yes No

Feature Atooma Tasker Automateit On{x}

Rules with more than one
condition

No Yes No Yes

Rules with more than one
action

No Yes Yes Yes

Event filtering No Yes Yes (few) Yes
Rule sharing Yes No Yes Yes
Channel categorization No Yes No Yes
Support for devices Yes Yes Yes Yes
Built-in context No Yes Yes Yes
Visual rule editor Yes Yes Yes No (js)
Temporal reasoning No No No Yes (js)

M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990 7981
increase their satisfaction compared to the standard interfaces of
commercial TASs.

When addressing the TASs limitations with Semantic Web tech-
nologies, there are plenty of options for modelling and implement-
ing rule-based knowledge. Some of the best known efforts with
this regard are RuleML (Boley, Paschke, & Shafiq, 2010; RuleML
Overview & Motivation, 2010), Semantic Web Rule Language
(SWRL) (O’Connor et al., 2005; SWRL: A Semantic Web Rule
Language Combining OWL & RuleML, 2005), and Rule Interchange
Format (RIF) (Kifer, 2008; RIF Production Rule Dialect, 2008). This
paper proposes the use of SPARQL Inferencing Notation (SPIN)
(SPIN Overview & Motivation, 2011) in the TASs modelling for
three main reasons. Firstly, SPIN is based on SPARQL Protocol and
RDF Query Language (SPARQL) (SPARQL Query Language for RDF,
2008). SPARQL is well established and supported by numerous
engines and databases. Therefore, SPIN rules can be directly exe-
cuted on the databases without requiring intermediate engines
(SPIN, SPARQL Inferencing Notation, 2011). These engines would
introduce communication overhead, reducing the TAS efficiency,
and an extra component in the architecture, complicating the
TAS maintenance. Secondly and as a consequence of the first rea-
son, no extra language is needed when implementing a semantic
TAS with SPIN (SPIN Frequently Asked Questions, 2015), just the
Resource Description Framework (RDF) and SPARQL. Thirdly, unlike
most rule-based approaches over Web Ontology Language (OWL)
such as SWRL, SPIN offers closed world semantic and the
unique-name assumption, which we find more intuitive for the
TAS application domain (SWRL Frequently Asked Questions,
2015). However, despite the explained arguments, all the afore-
mentioned technologies are suitable for building a semantic TAS
by using rules which are based on the EWE ontology presented
in this paper.
Table 2
Nomenclature in Task Automation Services.

Concept/name Ifttt Zapier Kine

Rule Recipe Zap Rule
Channel Channel App Endp
Event Trigger Trigger Even
Action Action Action Actio
Some researchers consider that TASs borrow inspiration from
Web mashups; i.e. applications generated by combining content,
presentation, or application functionality from disparate Web
sources (Vladimir, Budiselic, & Srbljic, 2015). This is because TASs
also compose services and combine data from different Web data
sources. After analysing the existing TASs, we identify five dimen-
sions in which they may be compared to Web mashups as shown
in Fig. 1. The first dimension is the number channels or widgets,
defined as the number of sources or elements that are available
to be used in the compositions. It depends on the number of data
sources that are integrated in the mashup engine or the TAS. In
both cases, it depends on the developers that support the system,
so their performance in this dimension is similar. The second
dimension is the power or the automations, or the resulting
mashup; i.e. the capabilities offered to users. Mashups lead this
field since they offer data visualisation, filtering, and processing
to name a few. Next, the ease of use is also considered; i.e. how easy
is to configure the automations or build the mashups for the user.
In this dimension, mashups usually involve complex data pipelin-
ing when not programming skills. On the other hand, TASs are
characterised by presenting their users intuitive interfaces to build
their automation. The ease of use in one the upsides that made
TASs so popular these days, since almost all Internet user is a
potential TAS user. Customisability or personalization is another
advantage of TASs. Each user is able to compose their own task
automations, as opposed to mashups, that are packed serviced
delivered to the user. More importantly, TASs allow users to utilize
their own personal streams. However, since TASs are focused on
being as easy to use as possible, some customisation capabilities
are skipped. Finally, portability is the fifth dimension. This is the
capability of exporting and importing automations/mashups to dif-
ferent engines or systems. Both, TASs and mashups perform very
low in this dimension because typically there is not any support
for this.

As explained, all these dimensions are compiled in the chart
shown in Fig. 1. According to the considerations given, the reason
of the higher penetration of TASs compared to mashups is their
personalization and ease of use. There is a third kind of system con-
sidered in the chart: semantic TASs, i.e. TASs which employ seman-
tic technologies. These provide several advantages over classic
TASs in most of the dimensions shown in the chart. The use of
the EWE ontology, presented in Section 3, supports these enhanced
TASs, as illustrated in the use case detailed in Section 4.
3. Evented WEb ontology (EWE) model

In this section, we present the EWE Ontology, which models the
most important aspects of TASs from a descriptive approach, that
enables service discovery and semantic rule definition featuring
reasoning over LOD. It stands as a reference model to define and
describe TASs. EWE is available online (Coronado, Iglesias, &
Serrano, 2015a).

After analysing the TASs described in Section 2, we derive a
model that contains the most relevant concepts (and relations
between them) presented by those services, using the most wide-
spread terminology. The EWE Ontology comprises two major
tic Triggers Tasker On{x}

Trigger Profile Rule
oint – – (Plugin) Object
t Input Context Trigger
n Output Act./Task Action

Fig. 1. Comparision between mashups and rule based TASs.

7982 M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990
parts: the main objects and properties defined in the EWE ontol-
ogy, and the mapping that relates EWE to existing ontologies such
as Tag Ontology (TAGS) or Friend of a Friend ontology (FOAF) (Amini,
Ibrahim, Othman, & Selamat, 2014). The ontology design method-
ology and examples of rules defined with EWE are also given in this
section.
3.1. EWE design methodology

The final model we propose is the result of an iterative develop-
ment process consisting of three steps: (i) we analyse each of the
TASs considered, identifying features and functionalities, then we
extract the concepts and properties they address; (ii) we define a
model that formally describes those elements; and finally, (iii)
we evaluate the model against the different use cases considered,
i.e. we check how suitable it is for describing rules from sites such
as Ifttt or Zapier. After each iteration, we repeat the process,
including some new elements that the results have shown to be
relevant, and remodelling others to best describe the domain.
Each iteration refines the model, i.e. classes and properties are
included, modified, or even removed from the ontology to make
it not only broader but also more accurate, thus more useful.

Therefore, the ontology design has been undertaken by an iter-
ative incremental development as in most agile software develop-
ment methodologies. Fig. 2 presents a diagram of a excerpt of the
resulting model showing the major classes and properties.
3.2. EWE elements: Main classes and properties

This section addresses the main objects and properties defined
in the EWE ontology.
3.2.1. Main classes
The core of the ontology comprises four major classes: Channel,

Event, Action and Rule. The description of particular TASs or use
case scenarios may inherit from them, creating new classes that
are specific to the domain. We detail the usage of the main classes
below.

The class Channel defines individuals that either generate
Events, provide Actions, or both. In the context we refer to,
Channel usually defines Web services. For instance, according to
this definition Dropbox is channel because it generates Events
every time a new file is uploaded or changed, and it provides the
capability (Action) to rename files or move them to another folder.
Of course, Dropbox channel would offer much more Events and
Actions. Furthermore, sensors and actuators are also modelled as
Channels since they produce Events and/or provide Actions; e.g.
a wearable device with GPS programmed to generate alerts when
it is near certain locations.

The class Event defines a particular occurrence of a process,
which may trigger rules in the TAS. As opposed to the definition
given in other ontologies (Raimond & Abdallah, 2007), in EWE
events are instantaneous, i.e. they have no duration over time.
The Event class may be subclassed to define particular types of
Events. For instance, the class NewChatMessage is subclass of
Event and defines the type of event that is generated when a
new chat messaged is typed. Instances of Event class offer informa-
tion of the particular event; e.g. instances of NewChatMessage have
information of the chat message and the date when it was sent.
Event individuals are generated by a certain Channel, when trig-
gered by the occurrence of the process that defines them, e.g. typ-
ing and sending a message in GoogleHangouts triggers the
generation of an event instance of type NewChatMessage. We say
that the channel that generates the event is the event generator;
GoogleHangouts is the event generator. Definitions of Event sub-
classes are not bound to a Channel since different channels may
generate the same events; e.g. both, GoogleHangouts and
Whatsapp channels may generate instances of NewChatMessage.

The class Action defines an operation or process provided by a
Channel. Actions produce effects whose nature depends on the
action nature. These include: producing a log message, modifying
a public or private state on a server, a physical action such as
switching on a light, etc. The effect can even trigger an Event gen-
eration, either by the same Channel or a different one. In a similar
manner to Events, the Action class may be subclassed to specific
actions. Again, Action definitions are not bound to a Channel,
because different channels can support the same actions; e.g.
Linkedin and Facebook channels provide the ChangeProfilePicture
action.

The class Rule defines an Event–Condition–Action (ECA) rule,
triggered by an Event that produces the execution of an Action.
Rules define particular interconnections between instances of the
Event and Action classes transferring information from the event
to the action. EWE employs the SPIN framework (Vambenepe,
2009) to model the execution logic of the rules. ECA rules can be
fully described as SPARQL (Kim, Moon, & Kim, 2014) construct
queries, i.e. as SPIN rules. The advantage of using SPARQL for
describing the rules is that it facilitates the inclusion of reasoning
over LOD since the SPARQL endpoints that are available in the
cloud may be directly queried.

3.2.2. Main properties
In addition to the description of the main classes, we offer a list

of the important properties and the purpose of including them
within the overall EWE ontology. These are hasParameter,
hasCategory, activeChannel, hasCreator and spin:rule.

The property hasParameter presents the parameters of an Action
or an Event. Instances of Event and Action can rarely be defined
without some configuration parameters. They differentiate each
individual, e.g. the body and the sender of an EmailReceivedEvent.
Each parameter should be provided by the appropriate
subPropertyOf of hasParameter. Given the hasParameter example,
the body is given by a hasBody property, and the sender by a
hasSender property both sub properties of hasParameter.

The property hasCategory indicates that a Channel, Event or
Action belongs to a certain category. An element may have more
than one category. The EWE Ontology does not provide a taxonomy
of channels, events, or actions; but it facilitates building that clas-
sification. The Channel categorization is important for channel dis-
covery and recommendation. This happens not only with discovery
and recommendation methods based on profiling, but also with
methods based on semantic similarity. Besides, expert systems
may use the channel categorization and help a user to find

Fig. 2. Detail of the EWE ontology model.

Fig. 3. External ontologies mapping.

5 Ifttt Gmail channel website: http://ifttt.com/gmail.

M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990 7983
alternatives to other channels; e.g. when a channel is not available
due to geographical restrictions. The range of the hasCategory
property is the class Category, a subclass of the Concept class from
the Simple Knowledge Organization System (SKOS) (Amini, Ibrahim,
Othman, & Nematbakhsh, 2015) ontology.

The hasActiveChannel property links users to Channel on which
they have an account, i.e. a channel they can include in the Rule
definition. Combined with the category of the channels, this infor-
mation may be used to reason over the alternatives that a user may
have to a particular choice of channel.

The property hasCreator links instances of Rule to its creator, an
onlineAccount from the FOAF ontology. The authors of the rules are
significant information for data analysis purposes and recommen-
dation systems.

The spin:rule property links rule instances with the SPARQL exe-
cution logic described using the spin vocabulary. In addition to that
property, ewe:triggeredByEvent and ewe:firesAction properties are
defined to link the rule with the event that triggered it and the con-
sequent action that was executed. These two properties simplify
the query required to select the events and actions that are related
to a rule instance, removing the extra triple patterns required to
navigate from the Rule instance to the Event and Action instances
through the spin:rule.

3.3. Mappings from external ontologies in EWE

EWE has been developed based on a number of existing classes
and properties from external ontologies as possible in the spirit of
the linked data philosophy. Hence, EWE enhances search, interop-
erability and linking data because several tools and search engines
are capable of using those vocabularies. The connections between
EWE and external ontologies are summarised in Fig. 3 and detailed
below.

� SPIN: the contribution of SPIN to EWE is essential, since rule
grounding is done by means of sp:Construct instances. The
implementation of SPIN rules as members of EWE rules con-
nects Events to Actions in the same way they are connected
in TASs.

� FOAF: EWE User class inherits from FOAF onlineAccount and
is connected by an account to a FOAF Agent. This assures bet-
ter interoperability and search operation, as well as
enhances profiling by allowing using external context.
� TAGS: the TAGS ontology provides a common definition of
tags. This ontology can extract information from third party
sources and also can provide smart connection and recom-
mendations depending on the tags set. The taggedWithTag
property, from the TAGS ontology, links rules to each of
their associated tags. This is thus another method for classi-
fying Rules.

� SKOS: SKOS is proposed for representing structured vocab-
ularies for the Semantic Web. Several tools search and rea-
son using the relations they define. The EWE concept
Category inherits from the SKOS Concept.

� dcterms: most of the administrative properties of every
class of EWE are defined according to DCMI Metadata
Terms (dcterms) metadata elements. This improves the
searches of elements of the ontology.

3.4. Examples of EWE use

In order to give a better idea of how specific Channels, Events
and Actions are defined using EWE; we show a short excerpt of a
Gmail channel definition in Listing 1. The channel represents the
Gmail channel implemented in a particular TAS (e.g. Gmail channel
from Ifttt5). We use the punning mechanism of OWL2 to attach

http://ifttt.com/gmail

Listing 1. Channel definition excerpt.

7984 M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990
properties to that channel. As a result, the description explicitly
states that the channel may generate events of a particular class
(ewe-mail:NewEmail) and provides a particular action for them
(ewe-mail:SendEmail). The example also includes a few related
hasParameter subproperties.

An example of event and action instances with grounded
parameters, which are based on the concepts defined in the listing
given above, is presented in Listing 2.

As explained, rules are conveniently defined as SPARQL con-
struct queries, and then stored as SPIN objects in RDF format.
Since SPIN syntax is more complex than SPARQL syntax, for the
sake of readability, we present an example of EWE rule in
SPARQL format in Listing 3. The example shows a rule that is trig-
gered every time an event of type NewEmail happens. Events are
filtered so only those with the label ‘important’ are considered.
Then, a NewChatMessage action is generated. The message sent
contains the email address captured from the incoming event. As
seen, the event–condition part of the ECA rule is given by the
WHERE clause and the FILTER function. The action part is given
by the CONSTRUCT clause, using the variables bound in the
WHERE clause.

The rule of the example does not restrict the incoming event to
be of a particular Channel. It will be triggered by events of the
appropriate type regardless of what channels generates them:
the Gmail channel, the Yahoo channel, or any other. Therefore,
EWE allows defining rules where the Channels, Events, and
Actions involved are not bound. This example illustrates how
EWE enables a new kind of rule, looser than the classical rules
defined by the TASs explored in the related works section.

4. A prototype of a semantic TAS with EWE

This section illustrates the use of EWE to implement a semantic
TAS which facilitates service discovery and enables reasoning over
LOD. For that purpose, we have developed a prototype of a TAS
with several channels integrated within the platform. These chan-
nels generate events that are described following the EWE model
and processed by the engines using SPIN rules. This section also
contributes to give the reader an explanation of (i) how events
are distributed in a semantic TAS based on EWE, (ii) how
Actuators and Web Services handle actions, and (iii) how the
Rule Engine processes incoming events and fires rules.
Nevertheless, the prototype described in this section is shown as
a use case, and it is not intended to be a reference implementation,
especially in terms of performance, scalability, etc.

Fig. 4 presents the general architecture of the prototype whose
components are distributed in three layers. The generation layer
shows that events may come from either Web Services or
Sensors, thus there are channels of different nature. Since several
processing modules take part in the execution flow, and in order
to support other modules to be included in the future, a transporta-
tion layer is needed to distribute these events among them.
Engines in the processing layer are in charge of executing the rules
when their triggers appear. In particular, the Semantic Rule Engine
is able to connect to SPARQL endpoint of LOD cloud and to use that
information to evaluate the rule conditions.

When Web Services and Sensors generate events, the Service
API Adapters or the Sensor Network, respectively, generate a mes-
sage that is pushed to the Message Oriented Middleware (MOM) in
the transportation layer. A payload with the RDF representation
of the event has to be included in these messages. The MOM is in
charge of distributing the messages to the subscribers according
the publish-subscribe pattern (Eugster, Felber, Guerraoui, &
Kermarrec, 2003). Thus, the Semantic Rule Engine in the processing
layer subscribes to the event messages from the MOM. In the same
manner, the Sensor Network and the Service API Adapters sub-
scribe to the action messages. When these two modules receive
the action messages from the MOM, they forward these messages

Listing 2. Event and action instances.

Listing 3. Rule in SPARQL form.

Fig. 4. General architecture of TAS implementation with EWE support.

M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990 7985
to the Actuators or the Web Services, respectively, which are
responsible for interpreting and executing the actions. This com-
munication based on messages gives loose coupling to the archi-
tecture and fits the Semantic Web vision (Berners-Lee, Hendler, &
Lassila, 2001).

The Semantic Rule Engine is responsible for: processing the
incoming event messages; executing the rules; and discarding
the messages once they have been processed to avoid executing
the same rule multiple times for the same event. In our prototype,
which employs the SPIN notation and a SPARQL engine, the man-
ner that rules are processed relies on the fact that these rules can
be expressed as SPARQL queries (see example in Listing 3). These
SPARQL queries are run every time an event is received in the
SPARQL engine. After executing the rules in their SPARQL query

7986 M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990
form, the new actions constructed by these queries are pushed to
the MOM. Then the MOM can deliver these actions to the sub-
scribers, e.g. Sensor Networks and Service API Adapters.

In order to provide a complete overview of how an event is gen-
erated, processed by the rule engine, and the constructed action is
executed; we illustrate all the steps for processing the rule
‘‘Whenever I receive an email labelled as important, text me a
notice’’ shown in Listing 3. First of all, a user (e.g. Ann) should have
created this rule. Then, the rule is loaded in the Semantic Rule
Engine. When Ann receives an email in her Gmail account, the
Service API Adapter, which is connected to the Gmail service, gen-
erates an ewe-mail:NewEmail event message that is pushed to the
MOM. Then, the MOM distributes the new message to the sub-
scribers. In our case, the Semantic Rule Engine receives the mes-
sage, extracts the RDF payload, and executes the rule. In case the
email has the label ‘important’, a new action message will be con-
structed (ewe:NewChatMessage action) and pushed to the MOM.
Consequently, the MOM distributes the new action message to
the subscribers. In the example, the Service API Adapter receives
the message, extracts the service parameters, and sends a request
to the Hangout Service API, which texts Ann informing about the
important email just received.

Based on this general architecture for a prototype, we have
modelled a scenario about a meeting arrangement. Fig. 5 shows
an instance of a meeting event similar to those the semantic engine
work with. As seen in the figure, some of the classes and instances
are labelled as Enhanced (according to the legend). We refer to
types, properties and instances that are not directly provided by
the event generator (the Web Services or Sensors), but obtained
from semantic endpoints (from the LODcloud). The information
retrieved is sometimes several steps away from that information
initially given. For instance, with the email address of the atten-
dees, we can derive: their social ids described with the FOAF ontol-
ogy; then their Linkedin account; and, then their public profile. In a
similar manner, the location of the meeting, its agenda, or the pro-
ject to which the meeting is related; may be retrieved from the
semantic endpoints.

There are a large number of vocabularies available that we can
use to describe different types of events as well as related informa-
tion that may be derived from the data LOD cloud. In Table 3, we
present several channels that are available in Ifttt. For each of
them, we suggest how the information provided by EWE may
enhance the TAS as well as which mappings could be used.

This enables the definition of rules that include clauses in the
condition part that are not directly related to the information given
within the event. We could define a rule that reads ‘‘When I con-
firm the attendance to a meeting, add all other attendees to
Linkedin as contacts’’. In this case, the Semantic Engine would have
to browse the LOD to get the foaf:Agent of the attendees, and in
case they have a foaf:OnlineAccount that describes a Linkedin
account, obtain the information needed to add them as contacts.
This is an enlightening example of reasoning over large scale data
outside the platform which is possible thanks to the contribution
presented in this paper, the Evented WEb ontology (EWE) model.
The implementation of the semantic TAS used in this section is
available online (Crespo, Coronado, & Iglesias, 2014).
5. EWE evaluation

In this section, we describe the evaluation process that was car-
ried out to show how EWE success at modelling some of the TASs
revised in the related works section while the shortcomings of
these approaches are addressed.

According to Brank et al. (Brank, Grobelnik, & Mladenić, 2005),
when evaluating an ontology is more practical to focus the
evaluation of different levels of it separately. They identify several
levels —lexical, hierarchical, semantic, application, etc. — and
determine which evaluation approaches are more suitable for eval-
uating each level. In general, selecting which levels should be eval-
uated depends on the nature of the ontology itself. In our case, the
EWE ontology was designed to describe all relevant features from
existing TASs. Altogether, those TASs form a wide domain to be
modelled, which possesses important differences between their
feature sets. Hence, the evaluation described will focus on the lex-
ical level. Besides, in Section 4 we show an architecture based on
EWE to improve the capabilities of a typical task automation sce-
nario. Thus, that use case addresses the application level evaluation.

Since there is no golden standard to compare with, a
data-driven evaluation was selected. To do so, we first analysed a
set of selected TASs and extracted their main features to define a
corpus; then, we define and apply metrics to get the results from
the corpus.
5.1. Feature extraction

The feature extraction process consists of the formalization of a
conceptual model as a list of features. Then, we will use those
extracted features to compile the corpus to use. In the process,
we thoroughly analysed Ifttt, Zapier, on{x}, and Tasker, to obtain
four theoretical models that represent them. Ifttt and Zapier were
included because they have many features in common with most
of the TASs we analysed in Section 2, but Tasker and on{x} were
also considered because they have many unique features.

We capture the feature list of each TAS by applying Algorithm 1
to the corresponding conceptual model. As it shows, we considered
features of four types: concepts, properties, relationships and their
restrictions. A sample of the feature extraction process outcome is
shown in Table 4. The summary of the results of the process carried
out with the four TASs selected is also presented in Table 5.

With the whole list of features extracted, we compile the corpus
to use in the evaluation. The list of features extracted from each
TAS is modelled as a logical vector where each position represents
a feature from the corpus: ‘1’ or ‘0’ on a position means that the
feature is in the TAS or is not included, respectively.

T j ¼ ðf 1; f 2; . . . ; f nÞ; f n 2 f0;1g ð1Þ

The EWE ontology is also represented as a logical vector in order
to apply the metrics as explained below.

Fig. 5. Use case example event model with linked-data.

Table 3
Examples of vocabularies that may be used to enhance events.

Event generator
(channel)

Enhancements Vocabularies

Blogger, ESPN,
Evernote

Post NLU. Emotion analysis sioc, onyx,
sport

Delicious, Evernote Tagging and categorization tags, skos
Facebook, Linkedin, G+ Unified account information foaf, vcard,

curric
Foursquarem, Life360 Geolocation information geo
Last.fm, SoundCloud Track recognition. Music

emotions
music, af, onyx

Wemo, SmartThings Sensor information, deployment
loc.

ssn

M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990 7987
5.2. Running the evaluation

We use the coverage and accuracy functions to the measure of
the quality of the ontology. Coverage measures the spread of the
ontology: the more features included, the greater the coverage.
We also use the accuracy function, to keep the ontology as sharp
and concise as possible. Both of these are in a trade-off between
embracing many features, and perfectly fitting the corpus.

Coverage describes the range of relevant features from the
domain in use that are defined in the ontology. Currently, the state
of the art has different ways for evaluating the coverage of an
ontology over a knowledge domain. The straightforward approach
is measuring the size of the ontology, i.e. counting classes. This can
be sufficient for a quantitative view (Ruan & Yang, 2010), even
Table 4
List of features extracted from Ifttt rules model.

Feature Type

9 Rule Concept
hasProperty(Rule, title) Property
hasProperty(Rule, dateCreation) Property
hasProperty(Rule, timesUsed) Property
hasRelation(Rule, tagged) Relation
restriction(Rule, tagged, range(Tag)) Restriction
hasRelation(Rule, hasCreator) Relation
restriction(Rule, hasCreator, range(User)) Restriction
hasRelation(Rule, triggeredBy) Relation
restriction(Rule, triggeredBy, range(Event)) Restriction
restriction(Rule, triggeredBy, maxCardinality(1)) Restriction
when it lacks the qualitative aspect (Ouyang, Zou, Qu, & Zhang,
2011).

Therefore, coverage is defined as the proportion of features
from the TAS that are defined in the ontology. With T being the
TAS and O the ontology:

CoverageðO; T Þ ¼ DimðO \ T Þ
DimðT Þ ð2Þ

Accuracy is defined as the Jaccard similarity (Jaccard, 1901).

AccuracyðO; T Þ ¼ DimðO \ T Þ
DimðO [T Þ ð3Þ

We introduced the accuracy metric to keep the ontology as
tightly suited to the corpus as possible, i.e. as simple and useful
as possible. If the ontology embraces too many features, it becomes
too big in size, being too complex, and thus hard to use.

The results of the process are generated using formula (2) and
formula (3), and are summarised in Table 6. As anticipated, the
results are favourable to Ifttt and Zapier, which shows our model-
ing efforts to focus on the common TASs features. Including most of
the features from Tasker or on{x} in EWE would have increased
their coverage measure at a cost of lowering the accuracy metric
of Ifttt and Zapier.

Then, we undertook a scrapping process to extract data of chan-
nels, events, actions and rules from the websites of Ifttt, Zapier,
on{x} and Tasker. In this case, the data is extracted from the appli-
cation itself. The results showed 55,914 rules connecting 718
events to 910 actions that were provided by 222 different chan-
nels. To extract the data from the websites, we used Scrappy
(Fernández-Villamor, Iglesias, & Garijo, 2012), since it returns data
in RDF and can be instructed to format it according to EWE.

The crawling, made during the first quarter of 2014, obtained
the results that are summarised in Table 7. Although the four
TASs studied are similar, the results show great differences in the
Table 5
Feature extraction process outcome.

Feature type Ifttt Zapier Tasker On{x}

Concepts 11 14 16 21
Relations 12 24 18 26
Properties 22 13 30 36
Restrictions 31 37 32 40

Total 76 88 96 123

Table 6
Coverage and accuracy results for the EWE ontology.

Target Coverage Accuracy

Ifttt 0.96 0.91
Zapier 0.92 0.84
on{x} 0.42 0.38
Tasker 0.51 0.48

Table 7
Scraping process results.

Class/Individuals Ifttt Zapier on{x} Tasker

Rule 67904 – 39 –
Channel 65 141 – 22
Event 113 463 70 72
Action 77 263 352 218

7988 M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990
ratios between channels, events, and actions. Ifttt and Zapier, both
Web platforms, present around two actions per channel on average
and a higher ratio of events. Tasker and on{x}, both smartphone
apps, show opposite results. They present a greater number of
actions than events: three times the number of events for Tasker,
and five times for on{x}. This is because their control over the
device allows them to provide many actions.
Table 8
SPARQL example queries using the EWE ontology.

Query SPARQL query

How many channels are supported by each TAS? SELECT ?tas (COUNT(?serv)

?channels)

WHERE {
?serv rdfs:subClassOf

ewe:Channel .

?serv ewe:supportedBy ?ta

}
GROUP BY ?tas

Which channel categories are defined? SELECT DISTINCT ?category

WHERE {
?serv rdfs:subClassOf

ewe:Channel .

?serv ewe:hasCategory

?category

}

Which channels are categorised as social? SELECT ?servName

WHERE {
?serv rdfs:subClassOf

ewe:Channel .

?serv ewe:hasCategory

ewe:Social .

?serv dcterms:title ?serv

}

How many actions can be executed by means of the
Tasker TAS?

SELECT (COUNT(?act) AS

?actsProvided)

WHERE {
?chan ewe:hasAction ?act

?chan ewe:supportedBy

ewe:Tasker

}

How many rules are triggered by Gmail channel
events?

SELECT (COUNT(?rule) AS

?ruleCount)

WHERE {
?srule rdf:type ewe:Rule

?srule ewe:triggeredByEv

?Event .

ewe:Gmail ewe:generatesE

?Event .

}
GROUP BY ?rule
Finally, the scraped data were loaded into a SPARQL endpoint in
order to make them available as a directory of channels, events and
actions available in several TASs. We defined a set of meaningful
queries that a common user would make in order to retrieve infor-
mation about the channels available, the events of a particular
type, etc. We coded those queries using SPARQL and executed
them. Table 8 gathers some of them together with their execution
outcomes.

These experiments show that the EWE ontology this paper con-
tributes with effectively models the TAS domain; i.e. the classes
and properties defined by EWE are suitable for describing TAS
channels, actions, events and rules. This conclusion is not only sup-
ported by the metric results shown in Table 6, but also by the pro-
cess of automatically extracting data from TASs websites and
applications. Finally, the scenario described around the architec-
ture and prototype proposed in Section 4 supports the hypothesis
that semantic TASs address the identified TASs drawbacks.
6. Conclusion and future work

This paper offers an overview of Task Automation Services
(TASs); their features, to what they owe their popularity; and, their
major drawbacks. The paper surveys the most important commer-
cial platforms and mobile apps that feature task automation, and
Results

AS Zapier (141), Tasker (22), Ifttt (65)

s

Event Management, CRM, Phone, Developer Tools, Email Marketing,
Social and 9 more

Wordpress, buffer, chatter, facebook, Twitter, and 7 more

Name

204 actions

.

7240 rules

.

ent

vent

M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990 7989
compares them to approaches in the specialized literature. This
survey is summarised in Table 1. Furthermore, an extended report
is available online (Coronado et al., 2015b) as additional material of
this paper.

This survey arises several conclusions. Firstly, TASs that focus
on different user audience implement different feature sets; e.g.
iftt (IFTTT put the internet to work for you, 2015) or Automateit
(Automateit turn your smartphone into a genius-phone, 2015),
that target the general audience, offer neat and easy to use inter-
faces with connectivity to smartphone channels. On the other
hand, Zapier (Zapier the best apps. Better together, 2015) or
Cloudwork (Cloudwork connect your business apps, 2015), that
target the business users, pay more attention to the power and
capabilities of the rules. Secondly, there is a lack of agreement in
the nomenclature used to refer to the same concepts, Table 2 gath-
ers these variations. Thirdly, the TASs studied suffer from two
major shortcomings, they lack of: support for channel discovery;
and, reasoning over contextual data and Linked Open Data(LOD).

Since several authors consider TASs an evolution of
Web-mashups, this paper also describes a framework embracing
five dimensions to compare them. The conclusion of this study is
that TASs perform better in the personalization and easy of use
dimensions; while Web-mashups feature better automation capa-
bilities. In the comparison, we also include TASs with semantic
capabilities, as the prototype introduced in Section 4 which
improves TASs performance in all five dimensions.

Beyond the TAS systems and the mashups survey, this paper
central contribution is the definition of the Evented WEb ontology
(EWE). EWE models TASs from a semantic approach, enabling rea-
soning over LOD and facilitating channel discovery. The paper
introduces a realistic use case scenario where the progress made
beyond the state of the art is illustrated. Besides, it presents an
implementation of a semantic TAS with support to EWE rules.
This prototype employs SPARQL Inferencing Notation (SPIN) to
describe Event–Condition–Action (ECA) rules. Finally, the paper
exhaustively evaluates the EWE ontology proposed by using a
data-driven approach. The evaluation conclusion is that EWE effec-
tively models four popular commercial TASs while it addresses the
shortcomings observed in them.

For sake of reproducibility, the material developed within this
work, including code and detailed results, is available online for
the interested reader: the EWE ontology (Coronado et al., 2015a),
the implementation of the semantic TAS (Crespo et al., 2014),
and the detailed results of the TASs survey (Coronado et al., 2015b).

Our main future work is to develop an expert system to assist
users to configure new rules in the semantic TAS proposed. To feed
the expert system knowledge and thus to enhance the assistance
provided, a clustering method can be proposed to group channels,
events, actions and rules. This expert system may recommend
related rules and variations given a certain rule. Given a channel,
it will bring up those similar channels according to different crite-
ria: frequently connected in rules, same category, similar event and
action sets, etc. This clustering approach can be used to infer
Channel groups, as given by some TASs. We aim to create a disam-
biguation method that combines channels which are equal but
described in different TASs. This method may determine which
events and actions correspond to the same purpose to merge them.
The EWE ontology has to be adapted to support this issue. Besides,
some TASs providers have shown their interest in building a tag-
ging system for rules, as already covered by EWE. In this regard,
we intend to extract and analyse the tags when available in order
to incorporate them into the expert system knowledge.

Another important future work is the evaluation of alternative
manners for passing messages and their performance in the pro-
posed TAS architecture. In this vein, to further explore SPARQL
Streaming technologies (Bolles, Grawunder, & Jacobi, 2008;
Barbieri, Braga, Ceri, Della Valle, & Grossniklaus, 2009) and the fea-
sibility of processing RDF events in real time, we will extend the
prototype presented in this paper with the best alternative
assessed. This is not required in a low rate event scenario, as the
one described in Section 4. Nonetheless, real time events are desir-
able in case of having sensors or other high rate streams.

Finally, we intend to develop a visual interface for the semantic
TAS to allow users to compare the system features to other TASs.
Acknowledgments

This research work is supported by the Spanish Ministry of
Economy and Competitiveness under the R&D project CALISTA
(TEC2012-32457); by the Spanish Ministry of Industry, Energy
and Tourism under the R&D project BigMarket
(TSI-100102-2013-80); and, by the Autonomous Region of
Madrid through the program MOSI-AGIL-CM (grant
P2013/ICE-3019, co-funded by EU Structural Funds FSE and
FEDER).
References

Amini, B., Ibrahim, R., Othman, M. S., & Nematbakhsh, M. A. (2015). A reference
ontology for profiling scholar’s background knowledge in recommender
systems. Expert Systems with Applications, 42(2), 913–928. http://dx.doi.org/
10.1016/j.eswa.2014.08.031. <http://www.sciencedirect.com/science/article/
pii/S0957417414005132>.

Amini, B., Ibrahim, R., Othman, M. S., & Selamat, A. (2014). Capturing scholar’s
knowledge from heterogeneous resources for profiling in recommender
systems. Expert Systems with Applications, 41(17), 7945–7957. http://
dx.doi.org/10.1016/j.eswa.2014.06.039. <http://www.sciencedirect.com/science/
article/pii/S0957417414003807>.

Atooma a touch of magic (2015). <http://www.atooma.com/> (Accessed: 2015-03-
31).

Automateit turn your smartphone into a genius-phone (2015). <http://
automateitapp.com/> (Accessed: 2015-03-31).

Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., & Grossniklaus, M. (2009). C-SPARQL:
SPARQL for continuous querying. In: Proceedings of the 18th international
conference on world wide web (pp. 1061–1062).

Beach, A., Gartrell, M., Xing, X., Han, R., Lv, Q., Mishra, S., et al. (2010). Fusing mobile,
sensor, and social data to fully enable context-aware computing. In Proceedings
of the eleventh workshop on mobile computing systems & applications (pp. 60).
New York: ACM Press.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific
American, 284(5), 28–37.

Boley, H., Paschke, A., & Shafiq, M. O. (2010). RuleML 1.0: The overarching
specification of web rules. In M. Dean, J. Hall, A. Rotolo, & S. Tabet (Eds.).
Semantic web rules – International symposium, ruleml 2010, washington, dc, usa,
october 21–23, 2010. proceedings (Vol. 6403, pp. 162–178). Springer. http://
dx.doi.org/10.1007/978-3-642-16289-3_15.

Bolles, A., Grawunder, M., & Jacobi, J. (2008). Streaming SPARQL-extending SPARQL to
process data streams. Springer.

Brank, J., Grobelnik, M., & Mladenić, D. (2005). A survey of ontology evaluation
techniques. In: Proceedings of 7th international multi-conference on information
society. Ljubljana.

Cloudwork connect your business apps (2015). <http://cloudwork.com/> (Accessed:
2015-03-31).

Coronado, M., & Iglesias, C. A., & Serrano, E. (2015a). EWE ontology specification.
<http://www.gsi.dit.upm.es/ontologies/ewe/> (Accessed: 2015-03-31).

Coronado, M., Iglesias, C. A., & Serrano, E. (2015b). Task automation services study.
<http://www.gsi.dit.upm.es/ontologies/ewe/study/full-results.html>
(Accessed: 2015-03-31).

Crespo, C., Coronado, M., & Iglesias, C. A. (2014). DrEWE an intelligent platform for
task automation. <https://github.com/gsi-upm/DrEWE> (Accessed: 2015-03-
31).

de Alba, J. M. F., Campillo, P., Fuentes-Fernández, R., & Pavón, J. (2014).
Opportunistic control mechanisms for ambience intelligence worlds. Expert
Systems with Applications, 41(4, Part 2), 1875–1884. http://dx.doi.org/10.1016/
j.eswa.2013.08.084. <http://www.sciencedirect.com/science/article/pii/
S0957417413007057>.

De Francisci Morales, G., Gionis, A., & Lucchese, C. (2012). From chatter to headlines.
In Proceedings of the fifth acm international conference on web search and data
mining (pp. 153). New York: ACM Press.

Elastic.io integrate once. connect many (2015). <http://www.elastic.io/> (Accessed:
2015-03-31).

Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A. M. (2003). The many faces
of publish/subscribe. ACM Computing Surveys, 35(2), 114–131. http://dx.doi.org/
10.1145/857076.857078.

http://dx.doi.org/10.1016/j.eswa.2014.08.031
http://dx.doi.org/10.1016/j.eswa.2014.08.031
http://www.sciencedirect.com/science/article/pii/S0957417414005132
http://www.sciencedirect.com/science/article/pii/S0957417414005132
http://dx.doi.org/10.1016/j.eswa.2014.06.039
http://dx.doi.org/10.1016/j.eswa.2014.06.039
http://www.sciencedirect.com/science/article/pii/S0957417414003807
http://www.sciencedirect.com/science/article/pii/S0957417414003807
http://www.atooma.com/
http://automateitapp.com/
http://automateitapp.com/
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0030
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0030
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0030
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0030
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0035
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0035
http://dx.doi.org/10.1007/978-3-642-16289-3_15
http://dx.doi.org/10.1007/978-3-642-16289-3_15
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0045
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0045
http://cloudwork.com/
http://www.gsi.dit.upm.es/ontologies/ewe/
http://www.gsi.dit.upm.es/ontologies/ewe/study/full-results.html
https://github.com/gsi-upm/DrEWE
http://dx.doi.org/10.1016/j.eswa.2013.08.084
http://dx.doi.org/10.1016/j.eswa.2013.08.084
http://www.sciencedirect.com/science/article/pii/S0957417413007057
http://www.sciencedirect.com/science/article/pii/S0957417413007057
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0080
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0080
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0080
http://www.elastic.io/
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078

7990 M. Coronado et al. / Expert Systems with Applications 42 (2015) 7979–7990
Fernández-Villamor, J. I., Iglesias, C. A., & Garijo, M. (2012). First-order logic rule
induction for information extraction in web resources. International Journal of
Artificial Intelligence Tools, 21, 1250032-1–1250032-2.

Hermoso, R., Centeno, R., & Fasli, M. (2014). From blurry numbers to clear
preferences: A mechanism to extract reputation in social networks. Expert
Systems with Applications, 41(5), 2269–2285. http://dx.doi.org/10.1016/
j.eswa.2013.09.025. <http://www.sciencedirect.com/science/article/pii/
S0957417413007598>.

IFTTT put the internet to work for you (2015). <http://ifttt.com/> (Accessed: 2015-
03-31).

Jaccard, P. (1901). Etude comparative de la distribution florale dans une portion des
Alpes et du Jura. Impr Corbaz.

Jula, A., Sundararajan, E., & Othman, Z. (2014). Cloud computing service
composition: A systematic literature review. Expert Systems with Applications,
41(8), 3809–3824. http://dx.doi.org/10.1016/j.eswa.2013.12.017. <http://
www.sciencedirect.com/science/article/pii/S0957417413009925>.

Karger, D. (2014). The semantic web and end users: What’s wrong and how to fix it.
In Internet Computing. IEEE.

Kietzmann, J. H., Hermkens, K., McCarthy, I. P., & Silvestre, B. S. (2011). Social
media? Get serious! Understanding the functional building blocks of social
media. Business Horizons, 54(3), 241–251.

Kifer, M. (2008). Rule interchange format: The framework. In D. Calvanese & G.
Lausen (Eds.). Web reasoning and rule systems (vol. 5341, pp. 1–11). Berlin
Heidelberg: Springer. http://dx.doi.org/10.1007/978-3-540-88737-9_1.

Kim, K., Moon, B., & Kim, H. J. (2014). RG-index: An RDF graph index for efficient
SPARQL query processing. Expert Systems with Applications, 41(10), 4596–4607.
http://dx.doi.org/10.1016/j.eswa.2014.01.027. <http://
www.sciencedirect.com/science/article/pii/S0957417414000487>.

König-Ries, B., Opasjumruskit, K., Nauerz, A., & Welsch, M. (2012). Mercury: User
centric device and service processing. In: Mms (pp. 112–116).

Martín-Vicente, M. I., Gil-Solla, A., Ramos-Cabrer, M., Pazos-Arias, J. J., Blanco-
Fernández, Y., & López-Nores, M. (2014). A semantic approach to improve
neighborhood formation in collaborative recommender systems. Expert Systems
with Applications, 41(17), 7776–7788. http://dx.doi.org/10.1016/j.eswa.2014.06.
038. <http://www.sciencedirect.com/science/article/pii/S095741
7414003790>.

O’Connor, M., Knublauch, H., Tu, S., Grosof, B., Dean, M., Grosso, W., et al. (2005).
Supporting rule system interoperability on the semantic web with SWRL. In Y.
Gil, E. Motta, V. Benjamins, & M. Musen (Eds.). The semantic web – ISWC 2005
(Vol. 3729, pp. 974–986). Berlin Heidelberg: Springer. http://dx.doi.org/
10.1007/11574620_69.

Onorati, T., Malizia, A., Diaz, P., & Aedo, I. (2014). Modeling an ontology on
accessible evacuation routes for emergencies. Expert Systems with Applications,
41(16), 7124–7134. http://dx.doi.org/10.1016/j.eswa.2014.05.039. <http://
www.sciencedirect.com/science/article/pii/S0957417414003194>.

On{x} automate your life (2015). <https://www.onx.ms/> (Accessed: 2015-03-31).
Opasjumruskit, K., Expósito, J., & König-Ries, B. (2012). MERCURY: User centric

device and service processing-demo paper. ABIS 2012 (pp. 2–5).
Ouyang, L., Zou, B., Qu, M., & Zhang, C. (2011). A method of ontology evaluation

based on coverage, cohesion and coupling. In 2011 Eighth international
conference on fuzzy systems and knowledge discovery (pp. 2451–2455). IEEE.
http://dx.doi.org/10.1109/FSKD.2011.6020046.

Pintus, A., Carboni, D., & Piras, A. (2012). Paraimpu: A platform for a social web of
things. In: Proceedings of the 21st international conference companion on world
wide web (pp. 401–404).

Raimond, Y., & Abdallah, S., (2007). The event ontology. (Tech. Rep.). Technical
report, 2007. http://motools. sourceforge. <http://motools.sourceforge.net/
event/event.html> (Accessed: 2015-03-31).

Rezaei, R., Chiew, T. K., Lee, S. P., & Aliee, Z. S. (2014). A semantic interoperability
framework for software as a service systems in cloud computing environments.
Expert Systems with Applications, 41(13), 5751–5770. http://dx.doi.org/10.1016/
j.eswa.2014.03.020. Retrieved from <http://www.sciencedirect.com/science/
article/pii/S0957417414001493>.

RIF Production Rule Dialect (2008). <http://www.w3.org/2005/rules/wiki/PRD>
(Accessed: 2015-06-10).

Ruan, J., & Yang, Y. (2010). Assess content comprehensiveness of ontologies. In:
2010 Second international conference on computer modeling and simulation (pp.
536–539). doi:http://dx.doi.org/10.1109/ICCMS.2010.275.

RuleML Overview and Motivation (2010). <http://wiki.ruleml.org/index.php/
RuleML_Home> (Accessed: 2015-06-10).
Serrano, E., Moncada, P., Garijo, M., & Iglesias, C. A. (2014). Evaluating social choice
techniques into intelligent environments by agent based social simulation.
Information Sciences, 286, 102–124. http://dx.doi.org/10.1016/j.ins.2014.07.021.

Serrano, E., Poveda, G., & Garijo, M. (2014). Towards a holistic framework for the
evaluation of emergency plans in indoor environments. Sensors, 14(3),
4513–4535. Retrieved from <http://www.mdpi.com/1424-8220/14/3/4513>.

Serrano, E., Rovatsos, M., & Botía, J. A. (2012). A qualitative reputation system for
multiagent systems with protocol-based communication. In: van der Hoek, W.,
Padgham, L., Conitzer, V., Winikoff, M. (Eds.), International conference on
autonomous agents and multiagent systems, AAMAS 2012, Valencia, Spain, June
4–8, 2012 (Vol. 3) (pp. 307–314). IFAAMAS. Retrieved from <http://dl.acm.org/
citation.cfm?id=2343620>.

Singh, V. K., & Jain, R. (2010). Structural analysis of the emerging event-web. In
Proceedings of the 19th international conference on world wide web (pp. 11–83).
New York: ACM Press.

SmartThings life like never before (2015). <http://www.smartthings.com/>
(Accessed: 2015-03-31).

Song, W., Liang, J. Z., Cao, X. L., & Park, S. C. (2014). An effective query
recommendation approach using semantic strategies for intelligent
information retrieval. Expert Systems with Applications, 41(2), 366–372. http://
dx.doi.org/10.1016/j.eswa.2013.07.052. <http://www.sciencedirect.com/science/
article/pii/S0957417413005393>.

SPARQL Query Language for RDF (2008). <http://www.w3.org/TR/rdf-sparql-query/>
(Accessed: 2015-06-10).

SPIN Frequently Asked Questions (2015). <http://spinrdf.org/faq.html> (Accessed:
2015-06-10).

SPIN Overview and Motivation (2011). <http://www.w3.org/Submission/spin-
overview/> (Accessed: 2015-06-10).

SPIN, SPARQL Inferencing Notation (2011). <http://spinrdf.org/> (Accessed: 2015-
06-10).

SWRL: A Semantic Web Rule Language Combining OWL and RuleML (2005). <http://
www.w3.org/Submission/SWRL/> (Accessed: 2015-06-10).

SWRL Frequently Asked Questions (2015). <http://protege.cim3.net/cgi-bin/wiki.
pl?SWRLLanguageFAQ> (Accessed: 2015-06-10).

Tasker total automation for android (2015). <http://tasker.dinglisch.net/>
(Accessed: 2015-03-31).

Thangaraj, M., & Sujatha, G. (2014). An architectural design for effective information
retrieval in semantic web. Expert Systems with Applications, 41(18), 8225–8233.
http://dx.doi.org/10.1016/j.eswa.2014.07.017. <http://www.sciencedirect.com/
science/article/pii/S0957417414004151>.

Vambenepe, W. (2009). A new SPIN on enriching a model with domain knowledge
(constraints and inferences). <http://stage.vambenepe.com/archives/496>
(Accessed: 2015-03-31).

Van Kleek, M., Moore, B., Karger, D. R., André, P., & Schraefel, M. (2010). Atomate it!
End-user context-sensitive automation using heterogeneous information
sources on the web. In Proceedings of the 19th international conference on
world wide web – WWW’10 (pp. 951). New York, New York, USA: ACM Press.
http://dx.doi.org/10.1145/1772690.1772787.

Vladimir, K., Budiselic, I., & Srbljic, S. (2015). Consumerized and peer-tutored service
composition. Expert Systems with Applications, 42(3), 1028–1038. http://
dx.doi.org/10.1016/j.eswa.2014.09.033. <http://www.sciencedirect.com/science/
article/pii/S0957417414005788>.

Webee Experience, Connected (2015). <http://www.webeeuniverse.com/>
(Accessed: 2015-03-31).

WigWag smart starts with a brain (2015). <http://www.wigwag.com/> (Accessed:
2015-03-31).

Windley, P. J. (2011). The live web: Building event-based connections in the cloud.
Course Technology.

Ying, J. C., Chen, H. S., Lin, K. W., Lu, E. H. C., Tseng, V. S., Tsai, H. W., et al. (2014).
Semantic trajectory-based high utility item recommendation system. Expert Systems
with Applications, 41(10), 4762–4776. http://dx.doi.org/10.1016/j.eswa.2014.01.042.
<http://www.sciencedirect.com/science/article/pii/S0957417414000669>.

Yu, J., Benatallah, B., Casati, F., & Daniel, F. (2008). Understanding mashup
development. IEEE Internet Computing, 12(5), 44–52.

Zapater, J. J. S., Escrivá, D. M. L., García, F. R. S., & Durá, J. J. M. (2015). Semantic web
service discovery system for road traffic information services. Expert Systems
with Applications. http://dx.doi.org/10.1016/j.eswa.2015.01.005. <http://
www.sciencedirect.com/science/article/pii/S0957417415000202>.

Zapier the best apps. better together (2015). <http://zapier.com/> (Accessed: 2015-
03-31).

http://refhub.elsevier.com/S0957-4174(15)00433-9/h0095
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0095
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0095
http://dx.doi.org/10.1016/j.eswa.2013.09.025
http://dx.doi.org/10.1016/j.eswa.2013.09.025
http://www.sciencedirect.com/science/article/pii/S0957417413007598
http://www.sciencedirect.com/science/article/pii/S0957417413007598
http://ifttt.com/
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0110
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0110
http://dx.doi.org/10.1016/j.eswa.2013.12.017
http://www.sciencedirect.com/science/article/pii/S0957417413009925
http://www.sciencedirect.com/science/article/pii/S0957417413009925
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0120
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0120
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0125
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0125
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0125
http://dx.doi.org/10.1007/978-3-540-88737-9_1
http://dx.doi.org/10.1016/j.eswa.2014.01.027
http://www.sciencedirect.com/science/article/pii/S0957417414000487
http://www.sciencedirect.com/science/article/pii/S0957417414000487
http://dx.doi.org/10.1016/j.eswa.2014.06.038
http://dx.doi.org/10.1016/j.eswa.2014.06.038
http://www.sciencedirect.com/science/article/pii/S0957417414003790
http://www.sciencedirect.com/science/article/pii/S0957417414003790
http://dx.doi.org/10.1007/11574620_69
http://dx.doi.org/10.1007/11574620_69
http://dx.doi.org/10.1016/j.eswa.2014.05.039
http://www.sciencedirect.com/science/article/pii/S0957417414003194
http://www.sciencedirect.com/science/article/pii/S0957417414003194
https://www.onx.ms/
http://dx.doi.org/10.1109/FSKD.2011.6020046
http://motools.sourceforge.net/event/event.html
http://motools.sourceforge.net/event/event.html
http://dx.doi.org/10.1016/j.eswa.2014.03.020
http://dx.doi.org/10.1016/j.eswa.2014.03.020
http://www.sciencedirect.com/science/article/pii/S0957417414001493
http://www.sciencedirect.com/science/article/pii/S0957417414001493
http://www.w3.org/2005/rules/wiki/PRD
http://dx.doi.org/10.1109/ICCMS.2010.275
http://wiki.ruleml.org/index.php/RuleML_Home
http://wiki.ruleml.org/index.php/RuleML_Home
http://dx.doi.org/10.1016/j.ins.2014.07.021
http://www.mdpi.com/1424-8220/14/3/4513
http://dl.acm.org/citation.cfm?id=2343620
http://dl.acm.org/citation.cfm?id=2343620
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0220
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0220
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0220
http://www.smartthings.com/
http://dx.doi.org/10.1016/j.eswa.2013.07.052
http://dx.doi.org/10.1016/j.eswa.2013.07.052
http://www.sciencedirect.com/science/article/pii/S0957417413005393
http://www.sciencedirect.com/science/article/pii/S0957417413005393
http://www.w3.org/TR/rdf-sparql-query/
http://spinrdf.org/faq.html
http://www.w3.org/Submission/spin-overview/
http://www.w3.org/Submission/spin-overview/
http://spinrdf.org/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ
http://tasker.dinglisch.net/
http://dx.doi.org/10.1016/j.eswa.2014.07.017
http://www.sciencedirect.com/science/article/pii/S0957417414004151
http://www.sciencedirect.com/science/article/pii/S0957417414004151
http://stage.vambenepe.com/archives/496
http://dx.doi.org/10.1145/1772690.1772787
http://dx.doi.org/10.1016/j.eswa.2014.09.033
http://dx.doi.org/10.1016/j.eswa.2014.09.033
http://www.sciencedirect.com/science/article/pii/S0957417414005788
http://www.sciencedirect.com/science/article/pii/S0957417414005788
http://www.webeeuniverse.com/
http://www.wigwag.com/
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0300
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0300
http://dx.doi.org/10.1016/j.eswa.2014.01.042
http://www.sciencedirect.com/science/article/pii/S0957417414000669
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0310
http://refhub.elsevier.com/S0957-4174(15)00433-9/h0310
http://dx.doi.org/10.1016/j.eswa.2015.01.005
http://www.sciencedirect.com/science/article/pii/S0957417415000202
http://www.sciencedirect.com/science/article/pii/S0957417415000202
http://zapier.com/

	Modelling rules for automating the Evented WEb by semantic technologies
	1 Introduction
	2 Related works in Task Automation Services (TASs)
	3 Evented WEb ontology (EWE) model
	3.1 EWE design methodology
	3.2 EWE elements: Main classes and properties
	3.2.1 Main classes
	3.2.2 Main properties

	3.3 Mappings from external ontologies in EWE
	3.4 Examples of EWE use

	4 A prototype of a semantic TAS with EWE
	5 EWE evaluation
	5.1 Feature extraction
	5.2 Running the evaluation

	6 Conclusion and future work
	Acknowledgments
	References

